Optimizing Linear Discriminant Error Correcting Output Codes Using Particle Swarm Optimization
نویسندگان
چکیده
Error Correcting Output Codes reveal an efficient strategy in dealing with multi-class classification problems. According to this technique, a multi-class problem is decomposed into several binary ones. On these created sub-problems we apply binary classifiers and then, by combining the acquired solutions, we are able to solve the initial multiclass problem. In this paper we consider the optimization of the Linear Discriminant Error Correcting Output Codes framework using Particle Swarm Optimization. In particular, we apply the Particle Swarm Optimization algorithm in order to optimally select the free parameters that control the split of the initial problem’s classes into sub-classes. Moreover, by using the Support Vector Machine as classifier we can additionally apply the Particle Swarm Optimization algorithm to tune its free parameters. Our experimental results show that by applying Particle Swarm Optimization on the Sub-class Linear Discriminant Error Correcting Output Codes framework we get a significant improvement in the classification performance.
منابع مشابه
Load Frequency Control in Power Systems Using Improved Particle Swarm Optimization Algorithm
The purpose of load frequency control is to reduce transient oscillation frequencies than its nominal valueand achieve zero steady-state error for it.A common technique used in real applications is to use theproportional integral controller (PI). But this controller has a longer settling time and a lot of Extramutation in output response of system so it required that the parameters be adjusted ...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملThe Evolutionary Approach Towards Swarm Optimization Algorithm Based Countenance Recognition
The countenance recognition presents a challenging problem in the field of image analysis and computer vision. Also, it received a good attention over the last few years. The applications of countenance recognition in the areas such as person tracking, surveillance, protection, entertainment, theft prevention, as easily as in the growth of human machine interfaces. It has been shown that precis...
متن کاملParticle Swarm Optimization Application in Optimization
The Particle Swarm Optimization (PSO) was used to select the three best inputs to explain the input-output relationship of both 'defects' and 'time' models. A ranking-based system was used to select the best features. Using this system, the value of each particle in the swarm represents the importance of each feature. During optimization, the three best-ranked features were used to train the Mu...
متن کاملOptimizing the Prediction Model of Stock Price in Pharmaceutical Companies Using Multiple Objective Particle Swarm Optimization Algorithm (MOPSO)
The purpose of this study is to optimize the stock price forecasting model with meta-innovation method in pharmaceutical companies.In this research, stock portfolio optimization has been done in two separate phases.The first phase is related to forecasting stock futures based on past stock information, which is forecasting the stock price using artificial neural network.The neural network used ...
متن کامل